Printed in Great Britain. All rights reserved

1. Appl. Maths Mechs, Vol. 60, No. 4, pp. 579-590, 1996
@ Pergamon Copyright © 1996 Elsevier Science Ltd
PII: S0021-8928(96)00073-1 0021-8928/96 $24.00+-0.00

THE STABILITY OF STOCHASTICALLY
PERTURBED ORBITAL MOTIONSt

L. B. RYASHKO
Ekaterinburg
(Received 26 January 1995)

When investigating the orbital stability of non-linear stochastic systems, two forms of first-approximation systems (with noise of
types I and II) are considered. The P-stability of first-approximation systems is defined. A necessary and sufficient condition for
P-stability is that the Lyapunov matrix differential equation should possess a periodic solution. An equivalent form is proposed
for this criterion, using which one can reduce the problem of stability for stochastic systems to determining the spectral radius
of a certain positive operator. When that is done, lower (upper) bounds for the spectral radius yield necessary (sufficient) conditions
for stability. The possibilities of obtaining constructive estimates are demonstrated for a system with one type Il noise. A parametric
stability criterion, which is a stochastic analogue of the well-known Poincaré criterion, is given for a two-dimensional system (the
spectral radius is found in explicit form). Copyright © 1996 Elsevier Science Ltd.

Consider an autonoraous system
dx = flx)dt 0.1)

where x is an n-vector, x = §(t) is a T-periodic solution of system (0.1), which is not the rest point (f(&(¢)) # 0),
and yis the phase trajectory (orbit) of this solution. The necessary and sufficient conditions for exponentially orbital
stability (the Androrov-Vitt theorem and its analogues [1-3]), expressed in terms of the characteristic indices of
the first-approximation system for perturbed motion

dy=F(t)ydt, F()= %f;(!:(r)) 0.2)
relate to Lyapunov’s first method.

The main technique for investigating the stability of stochastic systems in Lyapunov’s second method (see [4,
5]). A special construction of Lyapunov functions (LFs) was proposed in [6] to investigate the orbital stability of
system (0.1)—orbital Lyapunov functions (OFLs). A brief description of OLFs is given in Section 1. The method
of OFLs was used in [7] when analysing the stability of a deterministic orbit y to random perturbations of the system
of It6 stochastic equations

dx= f(0)di+ 3, 0, (x)dw, (1) ©03)
r=1

where w(t) (r = 1, ..., m) are independent standard Wiener processes, and o,(x) are sufficiently smooth vector-
valued functions of the appropriate dimension. To ensure thatx = E(?) is still a solution of system (0.3), it is assumed
that

o =0 (0.4)

The traditional approach to the choice of LFs in analyses of the stability of the rest point is to take the LF of
the corresponding first-approximation system. In [7], however, OFLs were constructed without using first-
approximation systems. This paper will introduce constructions of first-approximation systems for the non-linear
system (0.3) and investigate their stability.

First-approximation systems are introduced (Section 2) in connection with the approximation of the generating
differential operator of system (0.3) on the class of OFLs (Section 1), in two forms (noise of type I or II). Systems
with type II noise are easier to set up than systems with type I noise [8). At the same time, a system with just one
type II noise enablcs one to consider such important cases as the nth-order equation (Section 2), as well as the
general two-dimensional system (Section 6).

In addition, a specially selected single type II noise may serve as a majorant for a sequence of m arbitrary type
I noises (Section 3).
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irst-approximation systems constitute a certain class. This class consists of linear stochastic differential equations
with periodic coefficients (2.1) and (2.2) that possess a characteristic property: they have a deterministic periodic
solution with appropriate degeneracy of the multiplicative noises (2.3) and (2.4). The concept of P-stability will
be defined for systems of this class in Section 3. Theorem 1 states that a necessary and sufficient condition for P-
stability is that the corresponding Lyapunov matrix differential equation should possess a P-positive-definite T-
periodic solution. The solution of this equation may be found by the build-up (see Theorem 2) and iteration methods
(Section 4). The results of Sections 2 and 3 give the stability criterion of the traditional form of a stability theorem
based on the first approximation [7, Theorem 1].

It is frequently inconvenient to investigate stability issues by direct examination of the solvability of the Lyapunov
matrix equation, particularly in near-critical cases. By using the spectral theory of positive operators it has been
possible [8, 9] to devise fairly simple and effective stability criteria for systems with constant coefficients. A similar
approach will be extended in Section 4 to investigate the stability of a stochastic system to the determination of
the spectral radius p of a certain positive operator and verification of the inequality p < 1. On that basis, lower
(upper) bounds for p yield necessary (sufficient) conditions for stability. The possibilities of obtaining constructive
estimates are demonstrated in Section 5 for a system with one type II noise.

In Section 6 the spectral radius is determined explicitly for the case » = 2 (a system in a plane). This
enabled a parametric stability criterion to be obtained which is a stochastic analogue of the well-known Poincaré
criterion.

1. ORBITAL LYAPUNOV FUNCTION
A sufficiently smooth function is an OLF in a neighbourhood U of an orbit vy if

vl,=0, vliy,>0 (1.1)

Proofs of the theorem of stability in the first approximation for the case of the rest point utilize
quadratic forms as LFs. In the context of orbital stability, functions of the form

v (x) = AT (x0)D(Y(x))A(x) 1.2)

play a similar role, where y(x) is the point nearest to x on vy, A(x) = x — y(x) is a vector representing the
deviation of x from 1, ®(-) is a function defined on y such that ®(-) for each x € yis a symmetricn xn
matrix and

O rix)=0 (13)

where r(x) is the vector tangent y at x [6]. It is natural to call (1.2) an orbital quadratic form.

The functions ®(-) may be associated, using a solution x = E(¢) defining a natural parametrization
of the curve v, with the elements V of a certain space X. The elements of X are the 7-periodic symmetric
n x n matrices V(t), defined and sufficiently smooth on R’, such that, for any ¢ € R!

VIORE(N) =0 (14)

Each function ®(-) defines a T-periodic matrix V(r) = ®(§(t)); conversely, every matrix V(f) € Z,
through the function ¢ = #(x) inverse to x = E(f), defines a function ®(x) = V(t(x)) on v. In either case
equalities (1.3) and (1.4) follow easily from one another.

As we shall see, the orbital quadratic form v(x) is uniquely defined in a sufficiently small neighbourhood
U by the relationship

v (x) = AT (X)V((Y(x))A(x) (1.5)

given the solution &(7) and the matrix V' € X.

The fact that the function (1.5) is positive-definite in the sense of (1.1) is related to the fact that the
matrix P is V{¢)-positive-definite. Consider the matrix P, = I -yy T/o"y). The matrix P, defines a projection
operator whose range is a subspace orthogonal to thc vector y. We define a T -penodxc matrix P(f) =

Py

Definition 1 [6]). A T-periodic symmetric matrlx M) is said to be P(¢)-positive-definite at time ¢ if, for
any vector z such that P(t)z # 0, we have z'V(t)z > 0. A matrix V(¢) which is P(t)-positive-definite for
anyt € R is said to be P-posxtxve-deﬁmte
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Letus oonslder the: cone of matrices in the space X defined by K = {V € Z| V(t) is positive-semidefinite
for any ¢ € R'} and the set Kp, where Kp = {V € | V(t) is P-positive-definite}.

2. FIRST-APPROXIMATION SYSTEMS
Consider the stochastic systems

= F(t)zdt + Y. S, (1)zdw, (2.1)

dz = F(t)zdt + T /(2. Q, (t)2)dn, (22)

where z is an n-vector, w,(f) (r = 1, . .., m) is an independent sequence of standard Wiener processes,
and n(f) (r = 1, ..., m) are n-dimensional Wiener processes with parameters

Edn, (1)=0, Edn,()dn!(t)=G,(t)dt

The parameters in (2.1) and (2.2)—the n x n matrices F(¢), 5,(t), O,(t), G{t)—are T-periodic functions
and Q, and G, are symmetric and positive-semidefinite. Summation is always performed fromr = 1 to
r=m.

It is assumed here that some T-periodic vector-valued function y(¢) is a deterministic solution of
systems (2.1) and (2.2) and

S0 =0 (23)
Q2(0y(n=0 (24)
We shall refer to the noises in system (2.1) as type I noises and to those in system (2.2) as type 11

noises [8].

Systems (2.1), (2.3) and (2.2), (2.4) arise as first-approximation systems when the generating differential
operator L of a non-linear system (0.3) is approximated.

The operator L is defined [5] by

Lu(x)=(f(x), M)+%Z (0,(x), CRAC )0 (x))

ox ox?

The approximation Lv, where v(x) is an OLE, has the following form in the neighbourhood of an
orbit Y[7]

Lv (x) = AT (x)W(t(x))A(x) (255)
with W(t) = £,[V(1)], where
KIVI=V' +FTV+VF+3 8TVS, (2.6)

Viny== -—5(§(t)) F(t)=-g£(§(t)), S,(f)=a;i' &)

The operator &;, defined in the space Z, is related to the generating differential operator

Ly (¢, )-au(l :2) (F(t)z, -av—("—z-)-)+12 S,(f)z, v Z)S(t)
dz 2 oz2

of the linear system (2.1) by the formula

LZTV()2) = T (K IVO)Dz =T W)z 27
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Formulae (2.5)(2.7) define the role of system (2.1) as a first-approximation system in solving the
problem of whether the non-linear system (0.3) is stable. The matrix V() simultaneously defines both
a LFv(t, z) = z7V(¢)z of system (2.1) and an OLF (1.5) of system (0.3). In the context of orbital stability,
as we shall see, the relationship between the Lyapunov functions of the non-linear system and the
corresponding first-approximation system is somewhat more difficult to establish than in the case of
the rest point.

We know that the function y(f) = f(§(z)) is a solution of system (0.2). Differentiating the identity
c,(§(1)) = 0 (see (0.4)) with respect to ¢, we obtain an identity

é—g’L@(r))f(é(r» =0
29

which means that the matrices S, of system (2.1) satisfy (2.3). Thus, the first-approximation system (2.1)
has a specific property—it has a deterministic solution y(¢).
Suppose that the diffusion coefficients in system (0.3) can be written as

0, (x)=P,(x)9,(x) (2.8)

where B,(x) are scalar functions: §,| , = 0 and (p,(x) are n-dimensional vector-valued functions. The func-
tion B,(x) defines the intensity of the rth noise, while @,(x) “distributes” its action over the equations
of the system. In that case the parameters S, of the first-approximation system (2.1) may be written as

op

S, ()=p, (g, ), pO=0¢, &), gq,()= '(i(t))

At the same time, system (2.2) may also be taken here as the first-approximation system.
Indeed, if (2.8) holds, the matrix W(¢) in (2.5) may be written as W(t) = L,[V(#)], where
L,[VI=V'+ FTV+VF+31(VG,)0, : (29)
G, (D=p,(OPT (), 0, (N=q,(Dg] (1) (2.10)
the operator &; being related by the formula
£V =T (L, V(D2
to the generating differential operator L, of system (2.2). The parameters of the noises of system (2.2) are related
to the coefficients (2.8) of system (0.3) by formulae (2.10), and we can set n{t) = w/t)qt). Differentiating the
identity B(&(r)) = O with respect to ¢, we obtain an identity g7(?)y(f) = 0, which means that the matrices Qr) of
system (2.2) satisfy (2.4). Thus, together with a system of type (2.1), which involves type I noises, one can also take
a system of type (2.2), with type II noises, as the ﬁrst-apprommatnon system.
In many important cases, the form of type Il noises is more natural for first-approximation systems (see Remark
2 and the example in Section 6). Type II noises are easier to set up than type I noises. This enables us, for example,
using one type II noise as a simultancous majorant for several type I noises, to obtain simple sufficient conditions
for the stability of a system with type I noises (see Remark 6).
Remark 1. Suppose that G, = G (r = 1,. .., m) in system (2.2). Then the operator L, has the form
£ [VI=V'+FTV+VF+u(VG)Q, 0=30,
and it may be implemented using the following system, which involves only one noise
dz = F(Dzdt +f(z.0(D2)dn(1) (21)
where n(¢) is an n-dimensional Wiener process with parameters
Edn(1)=0. Edn(d)dn’ (1)=G()dr

Remark 2. Consider the nth-order equation

™ = g, x4 BB, (xx e x T ywr ()
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with a T-periodic solution x = &(f): BAE(®), . . . , £ (¢)) = 0. Writing this equation as a system of the form (0.3),
we get

X =x, Xp=x',.x,=x""D
h=xenfua1 =% fo=8(X10nxy)

6, =B, (X, x)0,  ©=(0,...,0,n07

A first-approximation system in the class of systems with type I noises will be
dz= F(t)zdt+ 3. ¢q xdw,

where

0 10 0
0 01 0
. . ) . 0 d
FO=| o o0 N HOE [aﬁ aB’)
98 dg o n
% 7

are evaluated along the solution &(). In the class of systems with type II nonses (see Remark 1), a suitable first-
approximation system will be the single-noise system (2.11), with Q = X947 n(f) = w(t) and w(¢) a scalar standard
Wiener process.

3. P-STABILITY OF LINEAR SYSTEMS

Let us investigate: the stability of the trivial solution z = 0 for systems of type (2.1), (2.3) and (2.2),
(2.4). As these systems have a T-periodic solution y(f) = f(§(t)), the rest point z = 0 cannot be exponen-
tially stable in the traditional sense. We shall consider here a weak analogue of such stability, defined
in terms of the projection operator P(f) = Py, of Section 1.

Definition 2. The trivial solution z = 0 of system (2.1) is said to be exponentially P-stable in the mean
square if & > 0, L :> 0 exist, such that

ENP(1)z(t)i* < Le™™ Ell P(0)z, 1 (3.1)

for any initial data z(0) = z; of the solution z(¢) of system (2.1). In such cases we shall say briefly that
system (2.1) is P-stable.

To avoid misunderstandings, we note that a similar term occurs in the literature |5}, namely, “expon-
ential p-stability” (small p), in relation to the behaviour of moments of the pth power.

Theorem 1. Let system (2.1) be P-stable. Then
(a) for any matrix C € K, the equation

L\VI=V' +FTV+VF+ Y STVS, =-C(1) (3.2)

has a unique solution in K—a matrix V € K;
(b)ifCe K, then Ve K,
Suppose that for some matnx C € K, Eq. (3.2) has a solution V' € K,,. Then system (2.1) is P-stable.

Proof. Necessity. Consider the function v (t, z) = z'V(¢)z defined by some symmetric matrix V(f). Let
() be a solution of system (2.1). It follows from It6’s formula and from (2.7) that

%{Eu (6.2 = ELp (t.2(1)) = EL2" (O IVOD2)] (33)
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If V(t) is a solution of Eq. (3.2) and z(t) = z, where z is an arbitrary deterministic vector, then
integration of Eq. (3.3) gives

ElT (V)] -2 V(Dz =—x(x.1) (3.4)

x(n0) = Elz" (5)C(s)z(s))ds
b 4

Let Vs, t), s € [, 1], be a solution of the equation £[V(s)] = C(s) such that ¥V{t, t) = 0. Then it
follows from (3.4) that

2L =2"V(t1)z (3.5)

For any matrix C € K, the integral in (3.5) is a monotone increasing function of ¢ and, by (3.1), it
converges as t — o. This means that V(t, f) is a monotone increasing function of ¢ and tends to a limit

V(t)= lim V(z,1)
400

By (3.5), the limit function V(7) satisfies the equality
X(T.e0)=2"V(T)2 (3.6)

The function V(1) is a solution of Eq. (3.2). Since C is a positive-semidefinite matrix, the same is true
of V. Let zy(s) be a solution of Eq. (2.1) such that z)(t + T) = z. Owing to the T-periodicity of the
coefficients of Eq. (2.1) and the matrix C, we have

x(T,00)= | Elz] (s)C(s)z,(s))ds

t+T

whence it follows that V(1) = V(1 + T). As we see, the limit function ¥(t) is T-periodic. Substituting
2(s) = fE(s)), z = fi&(x)) into (3.6) and taking into account the fact that C(s)(&(s)) = 0, we immediately
infer that V(t)f(&(t)) = 0. Thus the matrix ¥ € K is indeed a solution of Eq. (3.2).

We have to prove that the solution is unique. Let V; € K and V; e K be two solutions of Eq. (3.2). The
difference A = V; - V; satisfies the homogeneous equation £,[A] = 0. It then follows from (3.4) that

ElZT (A1) =2"A(T)z (3.7)

Since system (2.1) is P-stable and A(f) = P(f)A(t)P(t) is bounded as t — o, the left-hand side of (3.7)
tends to zero. Passing to the limit in (3.7), we obtain 2TA(t)z = 0, which implies that A(t) = 0. This
completes the uniqueness proof.

Now let C € K,,. Then for any z such that P(t)z # 0, we have 27C()z > 0, whence it follows that

X(T, %) >0

which means that z7V(t)z > 0. We have thus proved that V e K,, completing the proof of necessity.

Sufficiency. Let V € K, and C € K, be matrices for which Eq. (3.2) is true. Then Eq. (3.3) implies
the following identity for any solution z(¢) of system (2.1)

4 BT V) = Bl OCW) (38)
Since V, C € K,,, k; > 0 (i = 1, 2, 3) exist such that
k(1)< C(t) (3.9)

kyP(£) < V(1) < ky P(2) (3.10)

It follows from (3.8) and (3.9) that
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Elz" 1)V (Dz(n] < e ' 2T (0)V(0)z(0)] 311
and from (3.10) and (3.11) that

ENP()z(I1? < :—~‘e"‘f'E|| P(0)z(ON?
2

implying that system (2.1) is indeed P-stable.

This result is a periodic and “P-projection” version of Theorem 3.2 in [5, Chap. 6].

The solution V{(¢) of Eq. (3.2) may be found by the build-up method. Consider a sequence of functions
V() defined in the interval [0, T] as follows: V;(¢) is the solution of Eq. (3.2) such that V;(t) = B, where
B is an arbitrary symmetric n X n matrix such that BRE(0)) = 0. The other functions are found by
recursion: V. is the solution of Eq. (3.2) such that V,(f) = V,(0).

Theorem 2. Let system (2.1) be P-stable. Then the solution V(t) € K of Eq. (3.2) with C € K is the
limit of the sequence: V,(1): V(¢) = lim,,_,.. V,(t).

Proof. Let V(1, t) be a solution of Eq. (3.2) such that V(¢, £) = B(t), where B(t) = P(t)BP(t). It follows
that (3.4) that

V(L Dz = 1.0+ E(2T (1)B(1)z(1)] (3.12)

The analogous equality for V(t)—the unique solution of Eq. (3.2) in K—is obtained from (3.12) by
replacing B(t) by V(1).

Owing to the P-stability of system (2.1), we infer that V(t, £) — V(1) - 0 as t — o, for any 2. Conse-

quently, V(1) = lim,_,.. (1, 1).
The statement of the theorem now follows from the obvious relationships

V,(1)=V(t,nT), B(nT)=B

As is obvious from the proof of Theorem 2, the build-up method converges at the rate of a geometric
progression with quotient g = ™7, where a is the index of exponential decrease in (3.1).

Remark 3. The results obtained here for systems with type I noise also hold for systems with type 11
noise. In that case system (2.1), (2.3) and Eq. (3.2) in Definition 2 and Theorems 1 and 2 should be
replaced respectively by system (2.2), (2.4) and the equation

£VI=V'+ FTV+VF+ Y u(VG,)Q, =-C (3.13)

4. SPECTRAL CRITERION FOR P-STABILITY
Let us write Egs (3.2) and (3.13) in a unified notation

LVi=C, L=d4A+Y 4.1)
where s is a differential operator, related to the deterministic part of system (2.1), (2.2) by the formula
A[V)=V' + FTV+VF (4.2)

and & is an operator related to the corresponding stochastic parts of the systems. We then have, for
(2.1)

V=9, [VI=Z 5T VS, (4.3)
and for (2.2)
$V]= % 1V)=3u(VG,)Q, CX)
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In this notation

f=A+Y, =12

A necessary condition for systems (2.1) and (2.2) to be P-stable is that the deterministic system (0.2)
must be P-stable. On the assumption that system (0.2) is P-stable, it follows from Theorem 1(a) and
from the fact that Kisa reproducmg cone in the space I that the operator 4, considered on X, has
an inverse s, and moreover that s{~! is negative. Note that in both cases (4.3) and (4.4) the operator
& is positive.

Applying the operator ™! to both sides of Eq. (4.1), we obtain

V-P[V]=-A"[C], P=-og'¢ 4.5)

Thus, we have defined positive operators P, = -~ &, for systems (2.1) and (2.2). There are analogous
constructions for stochastic systems with constant coefficients (8, 9]. The use of the spectral theory of
positive operators has enabled us to obtain fairly constructive stability criteria. In this paper we extend
that approach to systems with periodic coefficients.

Theorem 3. System (2.1) ((2.2)) is P-stable if and only if
PP <1 (4.6)
where p(%) is the special radius of the operator %.

Proof. Necessity. Let system (2.1) ((2.2)) be P-stable. Then system (0.2) is also P-stable, guaranteeing
the existence of the operator ¢, Proceeding as before (see Theorem 1), we deduce from Eq. (4.1)
for some Ve K, C € K, that Eq. (4 5) holds, from which it follows, in view of -d” [C] € Kp, that V' -
P[V] € Kp. The operator P, as the product of the two positive operators -~ and &, is also positive.
Now, using Theorem 16.7 of [10], we immediately arrive at (4.6).

Sufficiency. As already pointed out, the P-stability of system (0.2) guarantees the existence of -
and, together with it, of . Due to condition (4 6), the operator & defined by B(V] = V — P[V] has
an inverse and moreover B~ = p_®*, i.e. B is positive. This means that for C € K, the matrix V
= B! [-471[C]] € Kp is a solution of Eq. (4.5). Hence, by the equivalence of (4.5) and (4 1), it follows
that V e K, satisfies Eq. (4.1). Consequently (see Theorem 1), system (2.1) ((2.2)) is P-stable.

Remark 4. In the system
dz=F()zdi +£3.S, (1)zdw, 4.7

where the constant £ > 0 defines the intensity of the interference, the quantity p(%) determines the critical value
€* = V(1/p(®)) of the parameter € at which system (4.7) ceases to be P-stable. When p(®) = 0, system (4.7) is P-
stable for any €.

Remark 5. 1t follows from the proof of Theorem 3 that the matrlx V(¢)—the solution of Eq. (4.1)—is the limit
of the monotone increasing sequence of matrices V,(¢): V() = -A7'(C), V,, = Z- oPX[Vo]. These matrices V, may
be found iteratively: V, ., = P[V,] + V. In circumstances such that the solution of the deterministic Lyapunov
equation (the determination of the values of the operator &~ ) is a fairly easy procedure and the stochastic system
has a sufficient reserve of stability (the spectral radius of @ is far from unity), the iterative method provides an
effective algorithm for solving Eq. (4.1).

Theorem 3 reduces the problem of the stability of a stochastic system to determining the spectral
radius p of the operator & and checking for the condition p < 1. In this situation, lower (upper) bounds
for the spectral radius yield necessary (sufficient) conditions for stability.
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5. BOUNDS OF THE SPECTRAL RADIUS OF THE OPERATOR & FOR A
SYSTEM WITH A SINGLE TYPE Il NOISE

Consider the system

dz = F(t)zdt + (2, (1) z)dn (5.1

where 1\(¢) is an n-dimensional Wiener process with parameters Edn(t) 0, Edn(t)d'qr(t) =G(nat, G
€ K, Q € Kp. It is assumed that the deterministic part (system (0.2)) is P-stable, i.e. that 47 exists. The
operator & for (5.1) is

S[V] = t(VG)Q 2)

The positive operator ® = ~{~'% has a spectral radius p that is an eigenvalue with eigenvector V e
K (see Theorem 11.5 in [10]). In view of (5.2), we can write the relationship P[V] = pV as

-7 WHAMI=pV(), 1) =w(V()G()=0 (5.3)

where pu(t) is a T-periodic function. It follows from (5.3) that
Bu] = pp (5.4)
where B[3] = —tr(4 [3(1)Q(1)]G (1)) is a positive operator on the cone of non-negative T-periodic scalar

functions &(¢).

Here p(r) is an eigenfunction of the operator 3, and p(®) = p(P) = p. The simple structure of the
operator & in the case of a single type II noise (see (5.2)) has made it possible to change from @ to &,
at the same time lowering the dimension of the problem to be solved.

Let us assume (normalization condition) that fu (¢)dt = 1 (throughout, unless otherwise specified,
the integration will be performed from ¢ = 0 to ¢ = T). It then follows from (5.4) that

= [Bnlde = —(4 ™' [uQ], PGP) (5.5)
where ( -, - ) denotes the inner product defined in X by
(V.W)=[u(VW)dt
Passing to adjoints in (5.5), we obtain
p = [ut(QD)dr = —(uQ, (") [PGP)) (5.6)
where D(t) is a T-periodic solution of the equation
A°[D)=~D’+ FD+ DFT = ~PGP (5.7)
From (5.6) we derive simple bounds for p

min r(QD)=p= max tr(QD) (5-8)

Note that (5.7) is the equation for the second moment Ez(t)z”(¢) of the system
dz = F(t)zdt + P(t)dn (5.9)

obtained from (5.1) by replacing the multiplicative noise by an appropriate additive noise. In this situation,
irrespective of the choice of initial data, the matrix of second moments of system (5.9) converges to the
T-periodic matrix L)(¢), which determines both the spectral radius (5.6) itself and the bounds (5.8).

We now consider another approach to estimating the spectral radius. Let W(r) = -#7[Q] € Kp be
a solution of the equation

W+FTW+WF=-0 (5.10)
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Let q,(t) > 0,4(r) > 0 be T-periodic functions related to the matrices Q(f) and W(¢) by the inequalities
g (W) < Q(2) = g, (1)W(2) (5.11)

Such functions always exist. They have been used [11] to obtain bounds for the characteristic exponents.
Consider the functions

o(p, ) =t (W()G(1))-p

@ (p.)=q (Dt (p.1)+ g, () (p,1) (5.12)
92(p.1) = gy (1)* (p, 1) + g (N (p.1)

g =(atla)/2, L(p)=[e p.t)dt, (=12

The functions J{p) are continuous and have different signs at the endpoints of the interval [m, M},
where m = minyg, ntr&( (), M = maxy, ptr(W(1)G(t)). Let p; be a root of the function I{p).

Theorem 4. Assume that the deterministic system (0.2) is P-stable and the inequalities (5.11) hold.
Then the spectral radius p(P) satisfies the inequalities

Pr<pP(P)=<p, (5.13)
If the numbers g; and g of (5.11) are constants, we have the following bounds
D y<pP)<Ly, 1=t {uWGar (5.14)
1 9 T

Proof. The functions

t
u:(t)=exp(-i J (P|(P|v‘)d’]>0
P o

are T-periodic solutions of the equations
Py + 1P (1) =0 (5.15)
It follows from inequality (5.11) for the functions @/p, ¢) that
Q1 (P. W) < a(p,1)Q(1) < @, (p.)W(?) (5.16)
Relations (5.15) and (5.16) imply inequalities which, in view of (5.12), are equivalent to
PAV 1+ SV 1= 0, ps[Vy]+F[V,]<0 (517)
where V{t) = p{t)W(t). Inequalities (5.17), in turn, are equivalent to
PVIZpY, P%I<pl,

and these imply inequality (5.13) (see Theorems 16.1, 16.2 in [10]).
Consider the case in which ¢,(¢) and g,(?) in inequality (5.11) are constants, i.e.

QW)= Q(1)= g, W(1) (5.18)
Express the functions ¢, in (5.12) in the form

PP =qa(p. ) +(q2 = 907 (P,1),  @2(p.t) = 0P, 1) +(q) — G2 )™ (p.1)
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The inequalities
(@2 =g (P = (92 -q)p. (¢ —92)0 " (P.1) < —(q, — )P
imply the inequalities
01PN > g (WG - g:p =01, 9,(p.0)< g, r(WG) - gp = ;
which in turn imply the inequalities (see (5.12))
@< L) Lpy=hL(p). L(p)=]e;(p.t)de (5.19)
In view of (5.19), the roots p} of the functions 7(p)

p=dy pi=2y
93 9

are related to the roots p; of the functions I(p) by the inequalities
PI<P PPy
Thus, using (5.13), we obtain (5.14).

Remark 6. System (5.1) with one type II noise may be used as a majorant for system (2.1), which
involves several type II noises. Indeed, the inequality STV, < tr(VS,87T)P;, which holds for any matrix
V € K, implies that

$V1=3STVS, st (VG)P=F,(V], G=3.5,5T
The operators &, = —s{ ', satisfy the inequality #, < ®,, from which it follows that p(®,) < p(P>).

Thus, the P-stability of system (5.1) with @ = P, 1 = £ Sw, is a sufficient condition for the P-stability
of system (2.1).

6. EXAMPLE

Consider system (22.1) in the case when # = 2. The projection matrix will then be of rank one and may be written
as P(t) = v(t)v"(¢), where v(t) is a normalized vector, orthogonal for any 7 to the vector ¥(t) = f(E(D)). 1t follows
from conditions (2.3) that the matrices S, may be represented as S, = b, v'(t), where b, = Syv. In view of this structure
of S, the m type I roises of system (2.1) may be replaced by a single type II noise. As a result, system (2.1) is
replaced by the equivalent system

dz= F(t)zdt + V27 Pedn, n=Yb,w, (1) (6.1)
The matrix V, playing the role of an eigenvector of the operator # of system (6.1), is also of rank one and it
may be written as Vit) = u()P(t), where p(¢) is a T-periodic scalar function. The relationship P{V] = pV (where
p is the spectral radius of &) leads to the following equation for p(t)
plW'P+ WP’ +W(FT P+ PF))+tr(GP)P=0 6.2)
G= Zbrbrr = Zsrsrr

Multiplying Eq. (5.2) on the left by vT and on the right by v, using the equalities vV Py = (vTv)2 = 1,vTPv =
(v'v)’ = 0, we obtain the equation

PR +a()u)+B(Hu=0 (6.3)
where

a)=vT(FT +Fw, B=vTGu (6.4)
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Dividing (6.3) by p # 0 and integrating over [0, 7], we get

p= -—IB(!)dl”(I(l)dt]_|

—the unique eigenvalue of &. The inequality
Ja(t)dr <0 (6.5)

is a necessary and sufficient condition for the deterministic part of system (6.1) to be P-stable. In view of the equality
Jout)de = 2t Fdt

condition (6.5) is equivalent to the well-known inequality (the Poincaré criterion, see [2])
A=T ' [uFdi<0

where A is a characteristic exponent of the system dz = F(f)zdt. Note that, since S, is degenerate

B = tr(z S,(r)S,T(t))

Thus, the inequality p < 1 (the necessary and sufficient condition for the P-stability of system (2.1)) may be
written as follows:

[rQF()+ XS, (ST (1))dt < 0
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