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When investigating the orbital stability of non-linear stochastic systems, two forms of first-approximation systems (with noise of 
types I and II) are consiSered. The P-stability of first-approximation systems is defined. A necessa~ and sufficient condition for 
P-stability is that the Lyapunov matrix differential equation should possess a periodic solution. An equivalent form is proposed 
for this criterion, using which one can reduce the problem of stability for stochastic systems to determining the spectral radius 
of a certain positive opeiator. When that is done, lower (upper) bounds for the spectral radius yield n ~ r y  (sufficient) conditions 
for stability. The pess~ilitics of obtaining constructive estimates are demonstrated for a system with one type II noise. A parametric 
stability criterion, which is a stochastic analogue of the well-known Poincar6 criterion, is given for a two-dimensional system (the 
spectral radius is found in explicit form). Copyright O 1996 Elsevier Science Ltd. 

Consider an autonoraous system 

ax = f~x~tt (o.1) 

where x is an n-vector, x = g(t) is a T-periodic solution of system (0.1), which is not the rest point (f(g(t)) ¢ 0), 
and y is the phase traj~ectory (orbit) of this solution. The necessary and sufficient conditions for exponentially orbital 
stability (the Andronov-Vitt theorem and its analogues [1-3]), expressed in terms of the characteristic indices of 
the first-approfimation system for perturbed motion 

ay = t~Ct)y, tt, t:Ct) =-~x(~Ct)) (0.2) 

relate to Lyapunov's first method. 
The main technique for investigating the stability of stochastic systems in Lyaptmov's second method (see [4, 

5]). A special construction of Lyapunov functions (LFs) was proposed in [6] to investigate the orbital stability of 
system (0.I)----orbital Lyapunov functions (OFLs). A brief description of OLFs is given in Section 1. The method 
of OFLs was used in [7] when analysing the stability of a deterministic orbit 7 to random perturbations of the system 
of It6 stochastic equations 

nl  

dx = f ( x ) d t  + ~. or(x)dwr(t) (0.3) 
r-----I 

where Wr(t) (r = 1 . . . . .  m) are independent standard Wiener processes, and or(x) are sufficiently smooth vector- 
valued functions of the appropriate dimension. To ensure thatx = ~(t) is still a solution of system (0.3), it is assumed 
that 

o~-- 0 (0.4) 

The traditional al~roach to the choice of LFs in analyses of the stability of the rest point is to take the LF of 
the corresponding first-approximation system. In [7], however, OFLs were constructed without using first- 
approximation systems. This paper will introduce constructions of first-approximation systems for the non-linear 
system (0.3) and investigate their stability. 

First-approximation systems are introduced (Section 2) in connection with the approJfimation of the generating 
differential operator of system (0.3) on the class of OFLs (Section 1), in two forms (noise of type I or II). Systems 
with type II noise a:re easier to set up than systems with type I noise [8]. At the same time, a system with just one 
type II noise enables one to consider such important cases as the nth-order equation (Section 2), as well as the 
general two-dimensional system (Section 6). 

In addition, a sp~ially selected single type II noise may serve as a majorant for a sequence of m arbitrary type 
I noises (Section 3). 
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F'ffst-approximation systems constitute a certain class. "If'his da~ consists of linear stochastic differential equations 
with periodic coefficients (2.1) and (2.2) that possess a characteristic property: they have a deterministic periodic 
solution with appropriate degeneracy of the multiplicative noises (2.3) and (2.4). The concept of P-stability will 
be defined for systems of this class in Section 3. Theorem 1 states that a necessary and sufficient condition for P- 
stability is that the corresponding Lyapunov matrix differential equation should possess a P-positive-definite T- 
periodic solution. The solution of this equation may be found by the build-up (see Theorem 2) and iteration methods 
(Section 4). The results of Sections 2 and 3 give the stability criterion of the traditional form of a stability theorem 
based on the first approximation [7, Theorem 1]. 

It is frequently inconvenient to investigate stability issues by direct examination of the solvability of the Lyapunov 
matrix equation, particularly in near-critical cases. By using the spectral theory of positive operators it has been 
possible [8, 9] to devise fairly simple and effective stability criteria for systems with constant coefficients. A similar 
approach will be extended in Section 4 to investigate the stability of a stochastic system to the determination of 
the spectral radius p of a certain positive operator and verification of the inequality p < 1. On that basis, lower 
(upper) bounds for p yield necessary (sufficient) conditions for stability. The possibilities of obtaining constructive 
estimates are demonstrated in Section 5 for a system with one type II noise. 

In Section 6 the spectral radius is determined explicitly for the case n = 2 (a system in a plane). This 
enabled a parametric stability criterion to be obtained which is a stochastic analogue of the well-known Poincar~ 
criterion. 

1. O R B I T A L  LYAP U N O V  F U N C T I O N  

A sufficiently smooth function is an OLF in a neighbourhood U of an orbit y if 

vl v=0 ,  v lv /~>0  (1.1) 

Proofs of  the theorem of  stability in the first approximation for the case of  the rest point utilize 
quadratic forms as LFs. In the context of  orbital stability, functions of the form 

v (x) = Ar(x)*(y(x))A(x)  (1.2) 

play a similar role, where ~(x) is the point nearest to x on y, A(x) = x - ~(x) is a vector representing the 
deviation o fx  from y, ~( . )  is a function defined on y such that * ( . )  for each x e y is a symmetric n x n 
matrix and 

O(x)r(x)=O (1.3) 

where r(x) is the vector tangent y at x [6]. It is natural to call (1.2) an orbital quadratic form. 
The functions ~(-) may be associated, using a solution x = ~(t) defining a natural parametrization 

of  the curve ~, with the elements Vof  a certain space Z. The elements of  Z are the T-periodic symmetric 
n x n matrices V(t), defined and sufficiently smooth on R 1, such that, for any t ~ R~ 

V(t)f(~(t)) = 0 (1.4) 

Each function ~( . )  defines a T-periodic matrix V(t) = O(~(t)); conversely, every matrix V(t) ~ Z, 
through the function t = t(x) invers~ to x = ~(t), defines a function O(x) = V(t(x)) on y. In either case 
equalities (1.3) and (1.4) follow easily from one another. 

As we shall see, the orbital quadratic form v(x) is uniquely defined in a sufficiently small neighbourhood 
U by the relationship 

, (x) = Ar(x)V(t(~(x)))a(x) (1.5) 

given the solution g(t) and the matrix V e Z. 
The fact that the function (1.5) is positive-definite in the sense of  (1.1) is related to the fact that the 

matrix P is V(t)-positive-definite. Consider the matrix Py = I-yyr/0 'Ty ). The matrix Py defines a projection 
operator  whose range is a subspace orthogonal to the vector y. We define a T-periodic matrix P(t) = 
Py(t). 

Definition 1 [6]. A T-periodic symmetric matrix V(t) is said to be P(t)-positive-definite at time t if, for 
any vector z such that P(t)z ~ O, we have zrV(t)z > 0. A matrix V(t) which is P(t)-positive-definite for 
any t ~ R 1 is said to be P-positive-definite. 
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Let us consider the cone of matrices in the space Z defined byK = {VE X l V(t) is positive-semidefmite 
for anyt  ~ R 1} and r.he setKe, whereKv = {VE EI V(t) is P-positive-definite}. 

2. FIRST-APPROXIMATION SYSTEMS 

Consider the stochastic systems 

dz = F(t)zzlt + ~'. Sr(t)zdw " 

dz = F(t)zdt + T. 4(z. (2, (t)z)dq, 

(2.1) 

(2.2) 

where z is an n-vector, w,(t) (r = 1 . . . . .  m) is an independent sequence of standard Wiener processes, 
and fir(t) (r = 1,. .... m) are n-dimensional Wiener processes with parameters 

F__.a~r (t)  = O, F_.d13r (t)drl,/ '(t) = G,(t)dt  

The parameters in (2.1) and (2.2)----the n x n matrices F(t), S,(t), Q,(t), Gr(t)----are T-periodic functions 
and (2, and G, are symmetric and positive-semidefinite. Summation is always performed from r = 1 to 
r-----re. 

It is assumed here that some T-periodic vector-valued function y(t) is a deterministic solution of 
systems (2.1) and (2.2) and 

$~(t)y(t) = 0 (2.3) 

Qr(t)y(O = 0 (2.4) 

We shall refer to the noises in system (2.1) as type I noises and to those in system (2.2) as type II 
noises [8]. 

Systems (2.1), (2.3) and (2.2), (2.4) arise as first-approximation systems when the generating differential 
operator L of a non-linear system (0.3) is approximated. 

The operator L is defined [5] by 

a.(x)~+, l E (=) Lu(x)=(.f(x), -axJ-2 (o,(x}, c32uax2 o,(x)) 
The approximation Lv, where v(x) is an OLF, has the following form in the neighbourhood of an 

orbit 7 [7] 

Lv (x) - Ar(x)W(t(x))a(x)  

with W(t) = ~£1[V(t)], where 

- ~ [ V ]  = V" + F r v  + VF + y . s r v s ,  

v(o = ½ a~ ru)-- ~(g(t)), sat) ax-~(~(t)), --- a--~(~(t)) 

(2.5) 

(2.6) 

The operator ~°1, defined in the space ~ is related to the generating differential operator 

av (t,z) + f  F(t)z, 14, ( t , z )  = at ~, 

of the linear system (2.1) by the formula 

c)v ( t ' z ) /+  1 / a2~(t 'Z)sr(t)zl  
az - ~ ,  sAt)z,  az 2 

1.1 (zTV(t)Z) = ZT ( ~  [V(t)])z = zrw( t ) z  (2.7) 
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Formulae (2.5)-(2.7) define the role of system (2.1) as a first-approximation system in solving the 
problem of whether the non-linear system (0.3) is stable. The matrix V(t) simultaneously defines both 
a LF v(t, z) = zrV(t)z of system (2.1) and an OLF (1.5) of system (0.3). In the context of orbital stability, 
as we shall see, the relationship between the Lyapunov functions of the non-linear system and the 
corresponding first-approximation system is somewhat more difficult to establish than in the case of 
the rest point. 

We know that the function y(t) = f(~(t)) is a solution of system (0.2). Differentiating the identity 
or(~(t)) = 0 (see (0.4)) with respect to t, we obtain an identity 

30, (~(t))f(~(t))=_O 
~x 

which means that the matrices S, of system (2.1) satisfy (2.3). Thus, the first-approximation system (2.1) 
has a specific property--it has a deterministic solution y(t). 

Suppose that the diffusion coefficients in system (0.3) can be written as 

Or(X ) = ~r(X)tPr(X) (2.8) 

where I~(x) are scalar functions: I~rl ¥ = 0 and cp,~x) are n-dimensional vector-valued functions. The func- 
tion I],(x) defines the intensity of the rth noise, while ¢r(X) "distributes" its action over the equations 
of the system. In that case the parameters S, of the first-approximation system (2.1) may be written as 

Sr(t)=pr(t)q,(t), p,(t) =tpr(~(t)), q,(t) = ~ x r ( ~ ( t ) )  

At the same time, system (2.2) may also be taken here as the first-approximation system. 

Indeed, if (2.8) holds, the matrix W(t) in (2.5) may be written as W(t) = ~2[V(t)}, where 

.~e2 [ v ]  = V'+FTV+VF+~.tr(VGr)Qr (2.9) 

Gr(t ) = pr(t)pTr (t), Qr(t) = qr(t)qTr (t) (2.10) 

the operator ~2 being related by the formula 

~2 (zrv(t)z) = z r (~2[ V(t)])z 

to the generating differential operator Z 2 of system (2.2). The parameters of the noises of system (2.2) are related 
to the coefficients (2.8) of  system (0.3) by formulae (2.10), and we can set Tk(t) = wr(t)q,(t). Differentiating the 
identity I],(~(t)) = 0 with respect to t, we obtain an identity q;(t)y(t) = 0, which means that the matrices Qr(t) of 
system (2.2) satisfy (2.4). Thus, together with a system of type (2.1), which involves type I noises, one can also take 
a system of type (2.2), with type II noises, as the first-approximation system. 

In many important cases, the form of type II noises is more natural for first-approximation systems (see Remark 
2 and the example in Section 6). Type II noises are easier to set up than type I noises. This enables us, for example, 
using one type II noise as a simultaneous majorant for several type I noises, lo obtain simple sufficient conditions 
for the stability of a system with type I noises (see Remark 6). 

Remark 1. Suppose that Gr = G (r = 1 . . . . .  m) in system (2.2). Then the operator L2. has the form 

~2[V]= V" + FTV + VF +tr(VG)Q, Q= ~,Q, 

and it may be implemented using the following system, which involves only one noise 

dz=Fft)zdt+~a~(t) (2.11) 

where rl(t) is an n-dimensional Wiener process with parameters 

Edq(t) = 0, Ea~(t)a~r(t) = G(t)dt 

Remark 2. Consider the nth-order equation 

x (n) = g(x,x',...,x(n-l))+5"fj,(x,x',...,x(~-l))w;(t) 
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with a T-periodic solutionx -- ~(t): 13,(~(t),..., ~(~-l)(t)) = 0. Writing this equation as a system of the form (0.3), 
we get 

X I = X, X 2 ---- X',....X n ----- X ( n - I )  

f l=x2  ..... A - l = x . ,  A = g ( x t  ..... x . )  

o r =13.(x t ..... x.)~p, ¢p=(O ..... 0,1) r 

A first-approximatio:a system in the class of systems with type I noises will be 

dz = F ( t ) zdt + ~, q)q r xdw r 

where 

F ( t ) =  

0 1 0  ... 0 II 
0 0 1  ... 0 ! 6 6 o  ... i , 
~)__Lg . ~g 

bx, . . . .  ~x,, 

q y ( t ) = (  o~r ~ r  I 

are evaluated along the solution ~(t). In the class of systems with type II noises (see Remark 1), a suitable first- 
approaSmation system will be the single-noise system (2.1 I), with Q = y.,q,q~ ~(t) = w(t)9 and w(t) a scalar standard 
Wiener process. 

3. P - S T A B I L I T Y  OF L I N E A R  S Y S T E M S  

Let  us investigate: the stability of the trivial solution z = 0 for systems of type (2.1), (2.3) and (2.2), 
(2.4). As these systems have a T-periodic solutiony(t) = f(~(t)), the rest point z = 0 cannot be exponen- 
tially stable in the traditional sense. We shall consider here a weak analogue of such stability, defined 
in terms of the projection operator  P(t) = Pv(t) of Section 1. 

Definition 2. The trivial solution z = 0 of system (2.1) is said to be exponentially P-stable in the mean 
square if ct > 0, L > 0 exist, such that 

Ell P(t)z(t)ll 2 <~ Le-°UEII P(0)z0112 (3.1) 

for any initial data z(0) = z0 of  the solution z(t) of system (2.1). In such cases we shall say briefly that 
system (2.1) is P-stable. 

To avoid misunderstandings, we note that a similar term occurs in the literature [5], namely, "expon- 
ential p-stability" (small p), in relation to the behaviour of moments of the pth power. 

Theorem 1. Let  system (2.1) be P-stable. Then 
(a) for any matrix C e K, the equation 

~I[V]  = V" + FTV + VF + ~,Srr VSr = - C ( t )  (3.2) 

has a unique solution in K- - a  matrix V E K; 
(b) if C e K m th,~n V e g p .  • 

Suppose that for some matrix C e Kp Eq. (3.2) has a solution V e  Kp. Then system (2.1) is P-stable. 

Proof. Necessity. Consider the function v (t, z) = zrv( t )z  defined by some symmetric matrix V(t). Let  
z(t) be a solution of system (2.1). It follows from lt6's formula and from (2.7) that 

d [ Eu (t, z(t))] = El.,p (t ,z(t))  = E[zr ( t ) (~[V(t )])z( t )]  (3.3) 
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If V(t) is a solution of  Eq. (3.2) and z(x) = z, where z is an arbitrary deterministic vector, then 
integration of Eq. (3.3) gives 

EIz r ( t)V(t)z(t) l-  zrv(x)z  = -~(x, t )  (3.4) 

t 

X('c, t) = I E[zr (s)C(s)z(s)] ds 
"C 

Let V(s, t), s ~ Ix, t], be a solution of  the equation .~l[V(s)] = C(s) such that V(t, t) = O. Then it 
follows from (3.4) that 

~(~, t) = zrv(z, t)Z (3.5) 

For any matrix C ~ K, the integral in (3.5) is a monotone increasing function o f t  and, by (3.1), it 
converges as t ~ **. This means that V(x, t) is a monotone increasing function of t and tends to a limit 

V(z)= lira V('c,t) 
t - - ~ ÷ m  

By (3.5), the limit function V(x) satisfies the equality 

X(~, oo) = zrv(x)z  (3.6) 

The function V(x) is a solution of Eq. (3.2). Since C is a positive-semidefinite matrix, the same is true 
of  V. Let zl(s) be a solution of Eq. (2.1) such that Zl(X + 73 = z. Owing to the T-periodicity of the 
coefficients of  Eq. (2.1) and the matrix C, we have 

z(x ,**)  = E[zr(s)C(s)zt (s)lds 
"¢+T 

whence it follows that V(x) = V(x + 7"). As we see, the limit function V(x) is T-periodic. Substituting 
z(s) = f(~(s)), z = f(~(x)) into (3.6) and taking into account the fact that C(sff(~(s)) = 0, we immediately 
infer that V(x)f(~(x)) = 0. Thus the matrix V e K is indeed a solution of Eq. (3.2). 

We have to prove that the solution is unique. Let 1:1 ¢ K and V2 ¢ K be two solutions of Eq. (3.2). The 
difference A = I:1 - / / 2  satisfies the homogeneous equation ~t[A] = 0. It then follows from (3.4) that 

EI?.r (t)A(t)z(t)] = zr A(,c)z (3.7) 

Since system (2.1) is P-stable and A(t) = P(t)A(t)P(t) ~ bounded as t ~ 0o, the left-hand side of (3.7) 
tends to zero. Passing to the limit in (3.7), we obtain z'A(x)z = 0, which implies that A(x) = 0. This 
completes the uniqueness proof. 

Now let C ~ Kt,. Then for any z such that P(x)z ~ O, we have zrC(x)z > 0, whence it follows that 

X(x, **) > 0 

which means that zrV(x)z > 0. We have thus proved that V ¢ Kp, completing the proof of necessity. 

Sufficiency. Let V ~ Kp and C ~ Kp be matrices for which Eq. (3.2) is true. Then Eq. (3.3) implies 
the following identity for any solution z(t) of system (2.1) 

d E[zr(t)V(t)z(t)] = _E[zr(t)C(t)z(t)] (3.8) 
dt 

Since V, C ¢ K t. ki > 0 (i = 1, 2, 3) exist such that 

kiV(t) <<- C(t) (3.9) 

k~P(t) <~ V(t) <~ k3P(t) (3.10) 

It follows from (3.8) and (3.9) that 
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E[zr (t)V(t)z(t)] <~ e-k~' EIzr (o)v(O)z(O)] (3.11) 

and from (3.10) and (3.11) that 

Ell P( t )z( t )ll 2 <~ k-~-~ e-ht EII P(0)z(0)II 2 
k2 

implying that system (2.1) is indeed P-stable. 
This result is a periodic and "P-projection" version of Theorem 3.2 in [5, Chap. 6]. 
The solution V(t) of Eq. (3.2) may be found by the build-up method. Consider a sequence of functions 

Vn(t) defined in the hlterval [0, T] as follows: Vl(t) is the solution of Eq. (3.2) such that Vl(t) = B, where 
B is an arbitrary symmetric n x n matrix such that Bf(~(0)) = 0. The other functions are found by 
recursion: Vn+l is the solution of Eq. (3.2) such that V,,+l(t) = V,(0). 

Theorem 2. Let sy;tem (2.1) be P-stable. Then the solution V(t) ¢ K of Eq. (3.2) with C ~ K is the 
limit of the sequencx. Vn(t): V(t) = lim~_.~. Vn(t). 

Proof. Let V(x, t) be a solution of Eq. (3.2) such that V(t, t) = B(t), where B(t) = P(t)BP(t).  It follows 
that (3.4) that 

Z r V('c, t)z = )~('C, t) + E[Z T (t)B(t)z(t)] (3.12) 

The analogous equality for V(x)--the unique solution of Eq. (3.2) in K--is obtained from (3.12) by 
replacing B(t)  by V(0. 

Owing to the P-srability of system (2.1), we infer that V(x, t) - V(x) ~ 0 as t ~ 00, for anyz. Conse- 
quently, V(~) = lim~_,,.. 1,'(% t). 

The statement of the theorem now follows from the obvious relationships 

V,(t) = V(t, nT), B(nT) = B 

As is obvious from the proof of Theorem 2, the build-up method converges at the rate of a geometric 
progression with quotient q = e -at, where ct is the index of exponential decrease in (3.1). 

Remark 3. The results obtained here for systems with type I noise also hold for systems with type II 
noise. In that case system (2.1), (2.3) and Eq. (3.2) in Definition 2 and Theorems 1 and 2 should be 
replaced respectively by system (2.2), (2.4) and the equation 

.~[V] = V" + F r y  + VF + Y.Ir(VG,)Q, = - C  (3.13) 

4. SPECTRAL CRITERION FOR P-STABILITY 

Let us write Eqs (3.2) and (3.13) in a unified notation 

~£[V] = --C, .~ = s~ + S ° (4.1) 

where s~ is a differential operator, related to the deterministic part of system (2.1), (2.2) by the formula 

~[V] = V" + F r y  + VF (4.2) 

and 5 ° is an operator related to the corresponding stochastic parts of the systems. We then have, for 
(2.1) 

~[V] = ~l[V] = ~.Sr, VS, (4.3) 

and for (2.2) 

S°[V] = 7 2 [ V] = E tr(VG,){2, (4.4) 
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In this notation 

= sa + ~e~, t=l,2 

A necessary condition for systems (2.1) and (2.2) to be P-stable is that the deterministic system (0.2) 
must be P-stable. On the assumption that system (0.2) is P-stable, it follows from Theorem l(a) and 
from the fact that K is a reproducing cone in the space ~ that the operator sd, considered on ~, has 
an inverse sg -1, and moreover that s~ -1 is negative. Note that in both cases (4.3) and (4.4) the operator 
b ° is positive. 

Applying the operator sd -1 to both sides of  Eq. (4.1), we obtain 

V -  ~[V] =-s~- t [C] ,  0 ~ = -sq -~ ~e (4.5) 

Thus, we have defined positive operators ~1 = _ ~ - 1  .Cip l for systems (2.1) and (2.2). There are analogous 
constructions for stochastic systems with constant coefficients [8, 9]. The use of the spectral theory of  
positive operators has enabled us to obtain fairly constructive stability criteria. In this paper we extend 
that approach to systems with periodic coefficients. 

Theorem 3. System (2.1) ((2.2)) is P-stable if and only if 

p (~)  < I (4.6) 

where p(~)  is the special radius of the operator ~ .  

Proof. Necessity. Let system (2.1) ((2.2)) be P-stable. Then system (0.2) is also P-stable, guaranteeing 
the existence of the operator M-'. Proceeding as before (see Theorem 1), we deduce from Eq. (4.1) 
for some V~ Kt,, C e K e that Eq. (4.5) holds, from which it follows, in view of- ,~- l [C]  ~ Kp, that V -  
0~[V] e Kp. The operator @, as the product of the two positive operators _~-1 and b °, is also positive. 
Now, using Theorem 16.7 of [10], we immediately arrive at (4.6). 

Sufficiency. As already pointed out, the P-stability of system (0.2) guarantees the existence of  -sd -1 
and, together with it, of @. Due to condition (4.6), the operator ~1 defined by ~[V] = V -  ~[V] has 

1 
an inverse and moreover ~-1 = ~ ' = 0 ~ ,  i.e. ~ -  is positive. This means that for C 6 Kp the matrix V 
= ~ - l  [_M-I[C]] 6 Ke is a solution of Eq. (4.5). Hence, by the equivalence of (4.5) and (4.1), it follows 
that V e  K v satisfies Eq. (4.1). Consequently (see Theorem 1), system (2.1) ((2.2)) is P-stable. 

Remark 4. In the system 

dz = F( t ) zd t  + e ~ . S  r ( t ) zdw r (4.7) 

where the constant e > 0 defines the intensity of the interference, the quantity p(0 ~) determines the critical value 
e* = ~/(1/p(~9)) of the parameter e at which system (4.7) ceases to be P-stable. When p(@) = 0, system (4.7) is P- 
stable for any e. 

Remark 5. It follows from the proof of Theorem 3 that the matrix V(t)---the solut!on of Eq. (4.1)--is the limit 
of the monotone increasing sequence of matrices V,(t): Vo(t) = -M-I[CI, Vn = E~=0~[V0]. These matrices V~ may 
be found iteratively: Vn+t = @[Vn] + Vo. In circumstances such that the solution of the deterministic Lyapunov 
equation (the determination of the values of the operator .~-1) is a fairly easy procedure and the stochastic system 
has a sufficient reserve of stability (the spectral radius of @ is far from unity), the iterative method provides an 
effective algorithm for solving Eq. (4.1). 

Theorem 3 reduces the problem of the stability of a stochastic system to determining the spectral 
radius p of the operator ~ and checking for the condition p < 1. In this situation, lower (upper) bounds 
for the spectral radius yield necessary (sufficient) conditions for stability. 
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5. B O U N D S  OF T H E  S P E C T R A L  R A D I U S  OF T H E  O P E R A T O R  ~ F O R  A 
S Y S T E M  W I T H  A S I N G L E  T Y P E  II N O I S E  

Consider the system 

dz = F(t)zdt + "4(Z, Q(t)z)d'rl (5.1) 

where 11(t) is an n-di:rnensional Wiener process with parameters Ed'q(t) = 0, EdTl(t)dllr(t) y G(t)dt, G 
K, O ~ Ke. It is assumed that the deterministic part (system (0.2)) is P-stable, i.e. that ~-" exists. The 

operator 8e for (5.1) is 

~[V] = tr(VG)Q (5.2) 

The positive operator ~ = -.~-19P has a spectral radius p that is an eigenvalue with eigenvector V e  
K (see Theorem 11.5 in [10]). In view of (5.2), we can write the relationship ~[V] = pVas  

- sg - i  [ll(t)Q(t)] = pV(t), ~(t) = tr(V(t)G(t));~ 0 (5.3) 

where It(t) is a T-pel.'iodic function. It follows from (5.3) that 

~[ I t ]  = pl.t (5.4) 

where ~[5] = -tr(s~-l[8(t)Q(t)]G(t)) is a positive operator on the cone of non-negative T-periodic scalar 
functions 5(0. 

Here It(t) is an eigenfunction of the operator ~ ,  and p (~)  = p(~)  = p. The simple structure of  the 
operator b ° in the case of a single type II noise (see (5.2)) has made it possible to change from ~ to ~ ,  
at the same time lowering the dimension of the problem to be solved. 

Let us assume (normalization condition) that fIt  (t)dt = 1 (throughout, unless otherwise specified, 
the integration will be performed from t = 0 to t = 7). It then follows from (5.4) that 

p = f [rt]at = -(a [rtQ], PGP) (5.5) 

where ( .,- ) denotes the inner product defined in Y. by 

(v, w} ffi J u-(vw}dt 

Passing to adjoinl~s in (5.5), we obtain 

p = ~ ~t tr(QD)at = -(~tQ, (sd')-I  [PGP]) (5.6) 

where D(t) is a T-periodic solution of the equation 

sd" [ D] = - D' + FD + DF r = - P G P  (5.7) 

From (5.6) we derive simple bounds for p 

rain tr(QD) ~ p 1; max tr(QD) (5.8) 
[0.T] tO,T] 

Note that (5.7) is the equation for the second moment Ez(t)zr(t)  of the system 

dz = F(t)zdt + P(t)drl (5.9) 

obtained from (5.1) by replacing the multiplicative noise by an appropriate additive noise. In this situation, 
irrespective of the choice of initial data, the matrix of second moments of system (5.9) converges to the 
T-periodic matrix D(t), which determines both the spectral radius (5.6) itself and the bounds (5.8). 

We now consider another approach to estimating the spectral radius. Let W(t) = -st- l [Q] e Kp be 
a solution of the equation 

W' + FrW + WF = -Q (5.10) 
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Let ql(t) > 0, qe(t) > 0 be T-periodic functions related to the matrices Q(t) and W(t) by the inequalities 

q] (t)W(t) ~ Q(t) ~ q2 (t)W(t) (5.11) 

Such functions always exist. They have been used [11] to obtain bounds for the characteristic exponents. 
Consider the functions 

~(p, t) = tar(W(t)G(t)) - p 

qh (P, t) - ql (t) cx+ (P, t) + q2 (t)cx- (p, t) (5.12) 

q0 2 (p, t) = q2 (t) 0~+ (P, t) + q! (t)OC (p, t) 

~± = (¢~:l:l(xl) / 2, It(p)=~cOt(P,t)dt, I=I,2 

The functions It(p] H~. $o.ntinuous and have different signs at the endpoints of the interval [m, M], 
where m = mini0 ' z]tr(~|)~G(t)), M = max10 ' zltr(W(t)G(t)). Let Pl be a root of the function Igp). 

Theorem 4. Assume that the deterministic system (0.2) is P-stable and the inequalities (5.11) hold. 
Then the spectral radius p(~s) satisfies the inequalities 

Pl ~< p(~S) ~< P2 (5.13) 

If the numbers ql and q2 of (5.11) are constants, we have the following bounds 

q_Lj ~< p(~) <~ q_Z2j, j = l ~ t r ( W G ) d  t (5.14) 
q2 ql 

Proof. The functions 

$tt(t)=exp(--~t ! q)t(Pt,t)dtl>O 

are T-periodic solutions of the equations 

PlP~ + IxttPt (Pl, t) = 0 (5.15) 

It follows from inequality (5.11) for the functions q)t(P, t) that 

q)l (P, t)W(t) ~ a(p,t)Q(t) ~ (P2 (P, t)W(t) (5.16) 

Relations (5.15) and (5.16) imply inequalities which, in view of (5.12), are equivalent to 

p~.~[V~ 1+ ~[V~ ] ~ 0, p2.~[V2]+ ~?[V2 ] ~ 0 (5.17) 

where Vl(t) = I~t(t)W(t). Inequalities (5.17), in turn, are equivalent to 

~[v~]~ p~V,, ~[½]~ p2V 2 

and these imply inequality (5.13) (see Theorems 16.1, 16.2 in [I0]). 
Consider the case in which qt(t) and qz(t) in inequality (5.11) are constants, i.e. 

qt W(t) ag Q(t) ag q2W(t) (5.18) 

Express the functions 9t in (5.12) in the form 

tPt(P,t)=q~ot(p,t)+(q2 -qt)oC(p,t), q)2(P,t)=q2o~(p,t)+(qj - q2)oC(p,t) 
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The inequalities 

(q2 - ql )OC (p, t) ~ -(q2 - qt )P, 

imply the inequalities 

~01 (p, t) >~ qt tr(WG) - q2P = q~, 

which in turn imply the inequalities (see (5.12)) 

I;(P)~< I,(P), I~(P)>~ 12(P), l ; (p )=Jg~ fp ,  t)dt 

In view of (5.19), the roots p~ of the functions I~(p) 

p; = q j, : q 2 j  
q2 ql 

(ql - q2 )OC (p, t) ~< -(ql - q2)P 

q~2(P ,t)<~ q2 t r (WG)-q jp  = ¢P2 
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(5.19) 

are related to the roots Pt of the functions l~p) by the inequalities 

P ~ P l ,  P2 ~<p~ 

Thus, using (5.13), we obtain (5.14). 

Remark 6. System (5.1) with one type II noise may be used as a majorant for system (2.1), which 
involves several tyt,e II noises. Indeed, the inequality SrVS, <~ tr(VS~r,)P1, which holds for any matrix 
V ¢ K, implies thai: 

~edv l  = zsrvs, ~tr(VG)P = 9'2IV 1, G= ~,SrSrr 

The operators @t = -sa-tg't satisfy the inequality ~1 <~ @2, from which it follows that P(@t) ~ P(@2). 
Thus, the P-stability of system (5.1) with Q = P, "q = Z SrW, is a sufficient condition for the P-stability 
of system (2.1). 

6. E X A M P L E  

Consider system (2.1) in the case when n = 2. The projection matrix will then be of rank one and may be written 
as P(t) = v(t)vr(t), where v(t) is a normalized vector, orthogonal for any t to the vector y(t) = .f(g(t)). It follows 

T from conditions (2-31 that the matrices S, may be represented as S, = b, v (t), where b, = Sty. In view of this structure 
of S,, the m type I r.oises of system (2.1) may be replaced by a single type II noise. As a result, system (2.1) is 
replaced by the equivalent system 

dz= F(t)zdt+ zT~'~zd~, 13(t)=~'.brwr(t ) (6.1) 

The matrix V, playing the role of an eigenvector of the operator ~ of system (6.1), is also of rank one and it 
may be written as V(t) = ~t)P(t), where Ix(t) is a T-periodic scalar function. The relationship ~[I/] = pV (where 
p is the spectral radius of ~)  leads to the following equation for IX(t) 

p[ la'P + laP' + St(FTp + PF)] + tr(GP) P = 0 (6.2) 

c = Xb, b r = X s,s r 

Multiplying Eq. (6.2) on the left by v r and on the right by v, using the equalities v r Pv = (vrv) 2 = I, vrp'v = 
(vrv)" = 0, we obtaha the equation 

p(la" +et(t)p)+B(t)p = 0 (6.3) 

where 

Ct(t)=vT(FT +F)u, ~$(t)=oTGo (6.4) 
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Dividing (6.3) by I.t ~e 0 and integrating over [0, T], we get 

p : - l~( t )d t[ fc t ( t )d t]  -I 

- - t h e  unique eigenvalue of ~ .  The inequality 
Jct(t)dt < 0 (6.5) 

is a necessary and sufficient condition for the deterministic part of system (6.1) to be P-stable. In view of the equality 

fc~(t)dt = 2~tr Fdt 

condition (6.5) is equivalent to the well-known inequality (the Poincar6 criterion, see [2]) 

X= T -I ~tr Fdt <O 

where X is a characteristic exponent of the system dz = F(t)zdt. Note that, since S, is degenerate 

~(t )= tr(XSr(t)STr (')) 
Thus, the inequality p < 1 (the necessary and sufficient condition for the P-stability of system (2.1)) may be 

written as follows: 

l t r (2F( t )  + ~.Sr(t)STr (t))dt < 0 

R E F E R E N C E S  

1. ANDRONOV A. A. and VITr A. A., On Lyapunov stability. Zh. Eksp. Teor. F/z. 2, 5, 373--374, 1933. 
2. DEMIDOVICH B. E, Lectures on the Mathematical Theory of  Stability. Nauka, Moscow, 1967. 
3. HARTMAN E H., Ordinary Differential Equations. John Wiley, New York, 1964. 
4. KATS I. Ya. and KRASOVSKII N. N., The stability of systems with random parameters. Pr/kL Mat. Mekh. 24, 5, 809-823, 

1960. 
5. KH 'MINSKII R. Z., The Stability of  @stons of  Differential Equations with Randomly Perturbed Parameters. Nauka, Moscow, 

1969. 
6. MIL' SI-ITEIN G. N., The stability of stabilization of periodic motions of autonomous systems. Pt/k/. Mat Mekh. 41, 4, 744-749, 

1977. 
7. MIL' SHTEIN G. N. and RYASHKO L. B., The stability and stabilization of orbits of autonomous systems under random 

perturbations. Ptik/. Mat. Mekh. 5~, 6, 951-958, 1992. 
8. RYASHKO L. B., Stabilization of linear stochastic systems with perturbations depending on the state and the control. Ptik/. 

Mat. Mekh. 43, 4, 612-620, 1979. 
9. LEVIT M. V. and YAKUBOVICH V. A., An algebraic criterion for stochastic stability of linear systems with parametric 

inference of the white-noise type. Pr/kL Mat. Mekh. 36, 1, 142-148, 1972. 
10. KRASNOSEL'SKII M. A., LIFSH1TS Ye. A. and SOBOLEV A. V., Positive Linear Systems. Nauka, Moscow, 1985. 
11. YAKUBOVICH V.. A. and STARZHINSKII V. M., Linear Differential Equations with Periodic Coefficients and Their 

App//cat/ons. Nauka, Moscow, 1972. 

Translated by D.L. 


